

Novel sensor for accurate thermal detection with high spatial resolution

Summary

Devices for accurate sensing of small temperature differences (below the 0.01 K range) with high spatial resolution, are scarce, and normally based on complex architectures.

The technology presented here provides a simple device, without the need to include complex circuitry, capable of measuring temperature variations in the $\approx 10^{-6}$ K range, with a very high spatial resolution. The device has applications in fields where determining the position of hot point (induced by the impact of a laser, for example) with high resolution is crucial.

The invention

The device is a temperature measuring device comprising a thin-film of magnetometallic material, which generates an electric voltage in response to a temperature gradient, in the presence of a magnetic field. This voltage can be easily measured by metallic contacts in one-side of the thin-film. From the measurement of this voltage it is possible to obtain information about local variations of the temperature.

State of development

A prototype was built to carry out the measurements and verify the theoretical studies

Advantages

- Very large temperature resolution in nanostructures (10⁻⁶ K)
- Very large spatial resolution (only limited by the lithographic process, ±250 ηm)

Applications

- Experimental assessment of nano-materials.
 Characterization of materials with customized thermal/electrical conductivity properties
- Thermal characterization of thin-films. Attaching the sensor to a thin-film it is possible to obtain its heat transfer map measuring the voltage produces by the sensor
- High accuracy measurement of very small temperature differences (µK) in thin-films, both across the film and along the surface
- Improve microcalorimetry accuracy
- Systems for determining the exact impact point (±250 µm) of a radiation or particles
- Other applications in fields where determining the position of hot point (induced by the impact of a laser, for example) with high resolution is crucial

More information: http://www.ibridgenetwork.org/usc/thermal_position_detector

Novel sensor for accurate thermal detection with high spatial resolution

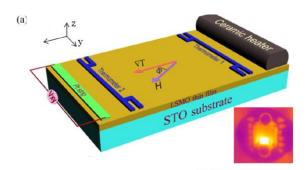


Figure 1. Sketch of the device used to measure the PNE and ANE in a thin film ($5x5 \text{ mm}^2$, and 35 nm thick) of LaSrMnO₃, along with a thermal image of the actual device with an in plane thermal gradient ∇ Tx. The two thermometers are Pt resistances deposited by optical lithography.

Inventors

 José Francisco Rivadulla Fernández and Tinh Cong Bui. Center for Research in Biological Chemistry and Molecular Materials (CIQUS). University of Santiago de Compostela.

Relevant publications

 Anomalous and planar Nernst effects in thin films of the half-metallic ferromagnet La_{2/3}Sr_{1/3}MnO₃. Cong Tinh Bui and F. Rivadulla. *Phys. Rev. B 90, 100403(R),* September 2014.

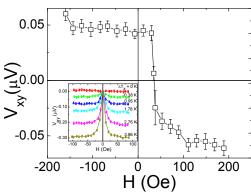


Figure 2. Field dependence of the transverse voltage Vxy for a temperature gradient across the plane ∇Tz of only 2 μ K. The inset demonstrates the sub 0.1 resolution for in-plane thermal gradients, ∇Tx .

IP rights

• Spanish patent application. Priority date August 2014.

Type of collaboration

- License agreement
- Technical assistance
- Cooperative research projects

Contact:

Fernando Pardo Seco, PhD email: <u>fernando.pardo@usc.es</u> Telephone: 0034 881815526 FAX: 0034 881815575 Edificio EMPRENDIA - Campus Vida 15782 Santiago de Compostela