Créditos ECTS Créditos ECTS: 6
Horas ECTS Criterios/Memorias Trabajo del Alumno/a ECTS: 99 Horas de Tutorías: 3 Clase Expositiva: 24 Clase Interactiva: 24 Total: 150
Lenguas de uso Castellano, Gallego
Tipo: Materia Ordinaria Grado RD 1393/2007 - 822/2021
Centro Facultad de Matemáticas
Convocatoria: Segundo semestre
Docencia: Sin docencia (En extinción)
Matrícula: No matriculable (Sólo planes en extinción)
Con el desarrollo de los contenidos de esta materia (que son básicos para afrontar el estudio de otras materias de la titulación) se pretende que el alumnado conozca en profundidad algunos de los principales conceptos, resultados y técnicas del estudio de funciones reales de una variable real, que constituyen el objeto central del Análisis Matemático.
La consecución de estos objetivos pasará por conocer los contenidos teóricos de la materia y ser capaces de relacionarlos y saber aplicarlos en la práctica en problemas concretos de diversos tipos, ocasionalmente, quizás, con ayuda del ordenador. Se hará uso del software Maxima u Maple para ilustrar los conceptos estudiados en la materia.
0. Preliminares topológicos.
Abiertos, cerrados, puntos de acumulación, compactos y conexos en R (rápido repaso de los contenidos topológicos de la materia Introducción al Análisis Matemático y de las herramientas de la asignatura Topología de los Espacios Euclídeos necesarias para los temas posteriores). (2h)
1. Límites
Límite de una función en un punto. Límites laterales. Límites infinitos y en el infinito. Cálculo de límites: Indeterminaciones. (5h)
2. Continuidad
Continuidad de una función en un punto. Continuidad secuencial. Funciones continuas: Propiedades. Teoremas de Weierstrass y de Bolzano. Continuidad de las funciones monótonas y de sus inversas. Continuidad uniforme: Teorema de Heine. Teorema de la extensión continua. Criterios suficientes y criterios necesarios para la continuidad uniforme. (8h)
3. Derivabilidad
Derivada y derivadas laterales de una función en un punto. Interpretaciones geométrica y física de la derivada. Reglas de derivación. Comportamiento local de las funciones derivables: Puntos críticos. Teorema de Darboux. Teorema del valor medio. Criterio de monotonía en un intervalo. Reglas de L'Hôpital: Aplicación al cálculo de indeterminaciones. (7h)
4. Derivabilidad de orden superior.
Derivadas de orden superior. Concavidad y convexidad. Periodicidad. El polinomio de Taylor. Resto de la fórmula de Taylor. Aplicaciones: Cálculos aproximados. (6h)
Material de la Biblioteca de Matemáticas (con signatura):
Bibliografía básica:
Bartle, R. G., Sherbert, D. R.. Introducción al Análisis Matemático de una variable. Limusa Wiley, 2010. (1202 196, 26 32)
Ballesteros, F. Ejercicios de análisis matemático. Autores 1994 (26 306)
de Burgos, J. Cálculo Infinitesimal de una variable, segunda edición. McGraw-Hill, 2007. (1202 381, 26 475, 26 424)
Bibliografía Complementaria:
Ayres, F. Cálculo Diferencial e Integral. McGraw-Hill 1991 (1202 67)
Bradley, G. L. Cálculo de una variable. Prentice Hall 1998. (1202 318, 26 462)
Fernández Viña, J. A. Lecciones de Análisis Matemático I, Tecnos. (1202 17, 26 169)
Fernández Viña, J. A., Sánchez Mañes, E. Ejercicios y complementos de Análisis Matemático I, Tecnos. (1202 69)
Larson, R.E., Hostetler, R. P., Edwards, B. H. Cálculo. McGraw-Hill, 2006. (26 491)
M. Spivak. Cálculo infinitesimal. Reverté, 1994. (1202 95, 26 263)
Material en liña:
• Aranda, Pepe. Cálculo infinitesimal en una variable. URL: http://www.iespppuquio.edu.pe/biblioteca/wp-content/uploads/2020/12/cal…
• Hardy, G. H. A Course of Pure Mathematics. Third Edition URL: https://www.gutenberg.org/files/38769/38769-pdf.pdf
El desarrollo de esta materia contribuirá a alcanzar, en diferentes medidas, todas las competencias recogidas en la Memoria del Título de Grado en Matemáticas de la Universidad de Santiago de Compostela (USC). En particular, la materia favorecerá la adquisición de las siguientes competencias específicas:
• Conocer las nociones de límite, continuidad, continuidad uniforme y derivabilidad para funciones reales de una variable real.
• Expresar con precisión y rigor, tanto por escrito como de forma oral, conocimientos, procedimientos, resultados e ideas que se estudian en el desarrollo del programa.
• Manejar los conceptos, resultados y métodos explicados.
• Identificar errores en razonamientos incorrectos proponiendo demostraciones o contraejemplos.
• Reconocer algunos problemas para cuya resolución sea apropiado el uso de los recursos aprendidos en la materia (Problemas de optimización, etc.).
• Emplear el software Maxima o Maple como apoyo para la realización de actividades relacionadas con los contenidos de la materia, con el objetivo, entre otras cosas, de favorecer la comprensión conceptual, el descubrimiento y el contraste de resultados propios de la materia.
Sin docencia.
Sin docencia. Examen final.
Sin docencia. El sistema ECTS recomienda 150 horas de trabajo.
Sin docencia. Sin recomendaciones especiales.
Maria Victoria Otero Espinar
- Departamento
- Estadística, Análisis Matemático y Optimización
- Área
- Análisis Matemático
- Teléfono
- 881813170
- Correo electrónico
- mvictoria.otero [at] usc.es
- Categoría
- Profesor/a: Catedrático/a de Universidad
Fernando Adrian Fernandez Tojo
- Departamento
- Estadística, Análisis Matemático y Optimización
- Área
- Análisis Matemático
- Correo electrónico
- fernandoadrian.fernandez [at] usc.es
- Categoría
- Profesor/a: Titular de Universidad
28.05.2026 10:00-14:00 | Grupo de examen | Aula 06 |
06.07.2026 10:00-14:00 | Grupo de examen | Aula 06 |