Créditos ECTS Créditos ECTS: 6
Horas ECTS Criterios/Memorias Trabajo del Alumno/a ECTS: 99 Horas de Tutorías: 3 Clase Expositiva: 24 Clase Interactiva: 24 Total: 150
Lenguas de uso Castellano, Gallego
Tipo: Materia Ordinaria Grado RD 1393/2007 - 822/2021
Departamentos: Matemáticas
Áreas: Álgebra
Centro Facultad de Matemáticas
Convocatoria:
Docencia: Sin docencia (Extinguida)
Matrícula: No matriculable
El objetivo de este curso es desarrollar los principales conceptos de geometría lineal tomando como modelo el espacio ordinario tridimensional, mediante un proceso de abstracción; es decir:
1) Definir las variedades lineales como una abstracción de las nociones de recta y plano de la geometría elemental. Estudiar los problemas de incidencia, paralelismo y posiciones relativas de las variedades lineales.
2) Definir el concepto de referencia afín e introducir coordenadas. Resolver mediante la introducción de coordenadas, problemas geométricos clásicos de incidencia. Calcular las ecuaciones lineales de una variedad lineal.
3) Estudiar las afinidades y el grupo afín.
4) Estudiar los espacios euclídeos. Definir el concepto de longitud de un vector. Probar la existencia de bases ortonormales y aprender a calcularlas por distintos métodos: Gram-Schmidt, diagonalización por congruencia, teorema espectral. Clasificar las
transformaciones ortogonales en el plano y en el espacio tridimensional.
5) Estudiar los espacios afines euclídeos. Utilizar la estructura de espacio vectorial euclídeo para definir conceptos geométricos, como perpendicularidad y distancia entre variedades lineales. Introducir referencias y coordenadas rectangulares. Calcular la distancia entre variedades lineales en un espacio afín euclídeo. Estudiar los movimientos entre espacios afines euclídeos. Saber clasificar los movimientos dando sus elementos geométricos y, recíprocamente, obtener la ecuación de un movimiento dado en términos geométricos.
6) Estudiar lugares geométricos en el plano afín euclídeo, como por exemplo: el círculo, la elipse, la hipérbola y la parábola. Definir los conceptos de cónicas y cuádricas afines. Calcular la ecuación reducida de una cónica o cuádrica real y los ejes principales. Clasificar una cónica o cuádrica real o compleja por sus invariantes métricos y por sus invariantes afines.
1. ESPACIO AFÍN.
1.1. Espacio afín sobre un espacio vectorial. Variedades lineales. Incidencia y paralelismo. Posiciones relativas. (8 horas expositivas)
1.2. Referencias afines: coordenadas. Cambio de coordenadas. Ecuaciones de las variedades lineales. (5 horas expositivas)
1.3. Aplicaciones afines. Afinidades. Grupo afín. Determinación de una afinidad. Ecuación de una afinidad. (6 horas expositivas)
2. ESPACIOS EUCLÍDEOS.
2.1. Longitudes. Bases ortonormales. Método de ortogonalización de Gram-Schmidt. Producto vectorial. (3 horas expositivas)
2.2. Transformaciones ortogonales: Clasificación. (7 horas expositivas)
3. ESPACIOS AFINES EUCLÍDEOS.
3.1. Perpendicularidad y distancias. ( 2 horas expositivas)
3.2. Referencias rectangulares: coordenadas rectangulares. (1 hora expositiva)
3.3. Movimientos: clasificación. (3 horas expositivas)
4. CÓNICAS Y CUÁDRICAS.
4.1. Lugares geométricos en el plano afín euclídeo: circunferencia, elipse, parábola e hipérbola. (1 hora expositiva)
4.2. Clasificación métrica de las cónicas y de las cuádricas reales. (4 horas expositivas)
4.3. Cónicas y cuádricas afines: clasificación afín de las cónicas y cuádricas. (2 horas expositivas)
Bibliografía básica
De Burgos J. Algebra lineal y geometría cartesiana. Ed. MacGraw-Hill, Madrid, 1999.
Golovina L. I. Álgebra lineal y algunas de sus aplicaciones. Ed. Mir, 1980.
Hernández, E. Álgebra y geometría. Ed. Addison Wesley, Madrid, 1994.
Hernández, E.; Vazquez, M. J.; Zurro M. A. Álgebra lineal y geometría. Ed. Pearson, Madrid, 2012.
Bibliografía complementaria
Gruenberg, K. W.; Weir, A. J. Linear Geometry. Graduate texts in Mathematics. Ed.
Springer-Verlag, New York, 1977.
Kostrikin, A. I.; Manin Yu. I. Linear algebra and geometry. Ed. Gordon and Breach, New York, 1989.
Snapper, E., Troyer, R. J. Metric affine geometry. Aademic Press, Inc, London, 1971.
Adquirir las competencias recogidas en la Memoria del grado en Matemáticas de la USC, y más específicamente, las siguientes: CG3, CG4, CG5, CE1, CE3, CE4, CT1, CT2, CT3 y CT5.
La clases expositivas e interactivas serán presenciales. La distribución semanal de la asignatura será la siguiente: 3 horas de clase expositiva por grupo y 1 hora de clase interactiva de laboratorio para cada uno de los 6 grupos en que se divide la materia.
Las clases expositivas se dedicarán a la exposición de los contenidos fundamentales de la asignatura. La exposición teórica será completada con ejemplos, y además se resolverán problemas propuestos a los alumnos en boletines que les serán entregados previamente.
Las clases interactivas de laboratorio servirán para la ilustración de los contenidos teórico-prácticos da asignatura.
En las tutorías en grupo muy reducido se atenderá al alumnado para discutir problemas relacionados con los ejercicios y para resolver cualquier duda del alumno relacionada con la materia.
Habrá un curso virtual y se incluirán apuntes detallados de toda la materia.
A lo largo del curso se requerirá del alumnado la resolución de ejercicios y la participación en las clases interactivas de laboratorio.
Las tutorías pueden ser presenciales o hacerse a través de Teams, campus virtual, y correo electrónico.
El sistema de evaluación será coordinado para los dos grupos de la materia.
Se prevé como criterio de evaluación la evaluación continua combinada con una prueba final. Esta prueba final se celebrará en la fecha fijada por la Facultad de Matemáticas y será la misma para todos los alumnos de la materia.
La evaluación continua consistirá en la resolución individual pruebas (dos por curso), que podrían no coincidir para los distintos grupos pero estarán coordinadas y serán similares.
La calificación se calcula haciendo uso de la evaluación continua (AC), y la prueba final escrita (EF). La calificación final se obtiene mediante la fórmula MÁX{30% AC + 70% EF , EF }
La calificación obtenida en la evaluación continua se aplica en las dos oportunidades de un mismo curso académico (segundo semestre y Julio). Si el alumno no se presenta al examen final en ninguna de las dos oportunidades tendrá la calificación de "No Presentado" aún cuando hubiese participado en la evaluación continua.
Para el caso de realización fraudulenta de ejercicios o pruebas será de aplicación lo que se recoge en la Normativa de Evaluación del rendimiento académico de los estudiantes y revisión de calificaciones: Artículo 16. Realización fraudulenta de ejercicios o probas: La realización fraudulenta de algún ejercicio o prueba exigida en la evaluación de una materia implicará la calificación de suspenso en la convocatoria correspondiente, con independencia del proceso disciplinario que se pueda seguir contra el alumno infractor. Se considera fraudulenta, entre otras, la realización de trabajos plagiados u obtenidos de fuentes accesibles al público sin re elaboración de los mismos o reinterpretación y sin citas a los autores y a las fuentes.
Clases expositivas: 42 horas
Clases de laboratorio: 14 horas.
Tutorías en grupos muy reducidos : 2 horas.
Tiempo de traballo persoal (non presencial) do alumno: 92 horas
Total: 150 horas
Estudiar diariamente y con la ayuda de los apuntes de la materia que estarán en el curso virtual y resolver las cuestiones y ejercicios que aparecerán en los boletines que se coloquen en el curso virtual. Aprovechar las tutorías tan pronto como surjan dificultades.
Maria Cristina Costoya Ramos
Coordinador/a- Departamento
- Matemáticas
- Área
- Álgebra
- Correo electrónico
- cristina.costoya [at] usc.es
- Categoría
- Profesor/a: Titular de Universidad
Raul Alvite Pazo
- Departamento
- Matemáticas
- Área
- Álgebra
- Correo electrónico
- raul.alvite.pazo [at] usc.es
- Categoría
- Predoctoral USC
Ana Peon Nieto
- Departamento
- Matemáticas
- Área
- Álgebra
- Correo electrónico
- ana.peon [at] usc.es
- Categoría
- PROFESOR/A PERMANENTE LABORAL
Martes | |||
---|---|---|---|
17:00-18:00 | Grupo /CLE_01 | Castellano | Aula 02 |
18:00-19:00 | Grupo /CLE_02 | Castellano | Aula 03 |
Miércoles | |||
17:00-18:00 | Grupo /CLIL_06 | Castellano | Aula 08 |
18:00-19:00 | Grupo /CLIL_02 | Castellano | Aula 03 |
19:00-20:00 | Grupo /CLIL_01 | Castellano | Aula 02 |
Jueves | |||
17:00-18:00 | Grupo /CLE_02 | Castellano | Aula 03 |
18:00-19:00 | Grupo /CLIL_04 | Castellano | Aula 03 |
18:00-19:00 | Grupo /CLIL_03 | Castellano | Aula 07 |
19:00-20:00 | Grupo /CLE_01 | Castellano | Aula 02 |
19:00-20:00 | Grupo /CLIL_05 | Castellano | Aula 06 |
02.06.2025 16:00-20:00 | Grupo /CLE_01 | Aula 06 |
03.07.2025 10:00-14:00 | Grupo /CLE_01 | Aula 06 |