Créditos ECTS Créditos ECTS: 6
Horas ECTS Criterios/Memorias Horas de Tutorías: 3 Clase Expositiva: 24 Clase Interactiva: 24 Total: 51
Lenguas de uso Castellano, Gallego
Tipo: Materia Ordinaria Grado RD 1393/2007 - 822/2021
Departamentos: Electrónica y Computación
Áreas: Ciencia de la Computación e Inteligencia Artificial
Centro Escuela Politécnica Superior de Ingeniería
Convocatoria: Segundo semestre
Docencia: Con docencia
Matrícula: Matriculable
Conocer las técnicas de aprendizaje supervisado (para regresión y clasificación, especialmente redes neuronales, aprendizaje profundo, máquinas de vectores de soporte y ensambles) y no supervisado (especialmente agrupamiento, selección de características y reducción de dimensionalidad), junto con la capacidad de aplicarlas en la implementación de controladores de cualquier tipo de robot.
Introducción al aprendizaje automático. Árboles de decisión. Selección de características y reducción de la dimensionalidad. Métodos lineales de regresión y clasificación. Redes neuronales y aprendizaje profundo. Agrupamiento: kmedias, agrupamiento jerárquico. Máquinas de vectores de soporte. Ensembles
Bibliografía básica:
- Machine Learning. Tom mitchell. Publisher: McGraw Hill, 1997
- Artificial Intelligence: A Modern Approach. Stuart J. Russell, Peter Norvig. 4th Edition. Prentice Hall, 2020.
Bibliografía complementaria:
- Deep Learning. Aaron Courville, Ian Goodfellow, and Yoshua Bengio. MIT Press, 2016.
- Pattern Recognition and Machine Learning. Christopher M. Bishop. Springer, 2006.
El alumno que ha superado el curso con éxito será capaz de:
Conocimiento:
Con54. Discutir las técnicas de aprendizaje supervisado y no supervisado.
Destreza:
H/D59. Aplicar técnicas de aprendizaje automático en la implementación de controladores de cualquier tipo de robot.
Competencia:
Comp14. Conocer las técnicas de inteligencia artificial utilizadas en robótica industrial y de servicios, saber cómo utilizarlas en aplicaciones robóticas fijas y móviles.
Comp15. Utilizar e implementar métodos de aprendizaje computacional en el análisis de datos sensoriales y para la toma de decisiones en sistemas robóticos.
Comp19. Entender y saber programar las técnicas de análisis, procesado, detección, reconocimiento y seguimiento de patrones en los distintos tipos de señales procedentes de diferentes sensores y cámaras dentro del entorno de un robot.
Los contenidos de la materia se impartirán tanto en clases expositivas de teoría como en clases interactivas de prácticas. Ambos tipos de clases se irán alternando a lo largo del semestre, de tal modo que las prácticas afianzarán los conceptos mostrados en teoría.
Las clases de teoría expositivas se desarrollarán en el aula por parte del profesorado, apoyado por medios electrónicos (presentaciones electrónicas, vídeos, documentos técnicos complementarios...) disponibles en el Campus Virtual de la USC. Dichas clases seguirán los contenidos pormenorizados de la asignatura que aparezcan reflejados en la programación docente anual. Las presentaciones magistrales del profesor se combinarán con la propuesta de ejercicios específicos para afianzar los conceptos presentados. Estos ejercicios serán resueltos por los alumnos (en clase o en casa) para después ser corregidos en clase de una manera participativa.
La docencia de las prácticas, realizadas en grupos reducidos de 20 alumnos y de carácter interactivo, serán actividades complementarias a las clases teóricas expositivas. Serán desarrolladas en laboratorios de robótica con robots reales y en clases de informática bajo la supervisión del profesorado. Los alumnos seguirán de manera autónoma los guiones de las prácticas específicas disponibles en el Campus Virtual de la USC. Estas actividades no sólo permitirán al alumnado la comprensión de los conceptos teóricos mediante su puesta en práctica sino que también les permitirán la adquisición de habilidades necesarias para aplicar algoritmos de aprendizaje automático en su futuro profesional.
Asimismo, en las tutorías se atenderá al alumnado para discutir, comentar, aclarar o resolver cuestiones concretas en relación con sus tareas dentro de la asignatura (recopilación de información, preparación de pruebas de evaluación, prácticas, trabajos...). Estas tutorías serán tanto presenciales como virtuales a través de correo electrónico, campus virtual o la plataforma Microsoft Teams.
La evaluación se llevará a cabo de dos formas: (1) Evaluación continua a través de la posible valoración de prácticas en el laboratorio. Se podrá proponer la posible realización de trabajos voluntarios que fomenten la creatividad del alumno, motivación, etc., y que permitan que profundicen en algunos de los contenidos de la materia, o exploren alternativas no cubiertas directamente en los contenidos impartidos por el profesor. (2) Por otra parte, habrá una última prueba final que podrá contener ejercicios teóricos y/o prácticos. La prueba final representará el 60% del total de la asignatura, mientras que el 40% restante lo representan las pruebas (las prácticas entregables mencionadas en el punto 1, trabajos, cuestionarios, etc.) que se propongan en el aula. La materia se considerará superada si se obtiene una calificación global ponderada igual o superior a 5 puntos (sobre 10) entre las dos formas de evaluación, y en la prueba final se obtiene una calificación igual o superior a 4 puntos (sobre 10).
El alumno recibirá la calificación de "non presentado" cuando no haga el examen final.
Para los casos de realización fraudulenta de ejercicios o pruebas será de aplicación lo establecido en la “Normativa de avaliación do rendemento académico dos estudantes e de revisión das cualificacións”
La asistencia tanto a las clases teóricas como prácticas será obligatoria, salvo por causa justificada. Para aquellos alumnos que tengan dispensa, el sistema de evaluación será el mismo no tendrán obligación de asistir a las clases teóricas, pero se mantiene la obligación de asistencia a las prácticas de laboratorio.
Evaluación de segunda oportunidad: Los alumnos podrán entregar en fecha previa el examen de la segunda oportunidad, aquellas actividades que le plantee el profesor, correspondientes a aquellas que no hubiesen superado en la convocatoria anterior. Podrá haber una defensa de trabajos con el profesor. Por otra parte, habrá un examen de segunda oportunidad, en consonancia con lo que sucede en la primera oportunidad y cuyo peso en la calificación final es el mismo.
Evaluación de repetidores: los alumnos repetidores se evaluarán de la misma forma que los alumnos en la primera oportunidad.
La materia tiene una carga de trabajo de 6 ECTS dividida de la siguiente forma:
- 1. Trabajo en el aula (60 horas presenciales)
- 1.1. Clases expositivas teóricas (en grupo grande): 24 horas
- 1.2. Prácticas (con pequeños grupos): 24 horas
- 1.3. Tutorías de grupo: 3 horas
- 1.4. Tutorías individualizadas: 4 horas
- 1.5. Actividades de evaluación: 5 horas
- 2. Trabajo personal del alumnado (90 horas no presenciales)
- 2.1. Lectura, revisión de temas y ejercicios de teoría: 24 horas
- 2.2. Preparación de ejercicios e informes de prácticas: 48 horas
- 2.3. Preparación de tutorías de grupo: 4 horas
- 2.4. Preparación de tutorías individualizadas: 7 horas
- 2.5. Preparación de pruebas de evaluación: 7 horas
Debido a la alta correlación existente entre los conceptos desarrollados en las clases de teoría y los contenidos de las prácticas, se recomienda a los alumnos constancia en el estudio de la materia, acudiendo a las sesiones de prácticas con los conceptos teóricos revisados y los ejercicios resueltos. La realización de las prácticas ayudará al afianzamiento de los conceptos teóricos y a su utilización en situaciones reales.
Francisco Javier Garcia Polo
Coordinador/a- Departamento
- Electrónica y Computación
- Área
- Ciencia de la Computación e Inteligencia Artificial
- Correo electrónico
- franciscojavier.garcia.polo [at] usc.es
- Categoría
- Profesor/a: Titular de Universidad