Skip to main content

Mathematics Degree

Modality
In-person
Branch of knowledge
Science
School(s)
Faculty of Mathematics
Rúa Lope Gómez de Marzoa, s/n, 15782
Santiago de Compostela
881813219 (Conserxaría)
881813130 (Decanato)
zmatdeca [at] usc.gal
Campus
Santiago de Compostela
estudante de matematicas

Mathematics has a millennial tradition, both as a scientific field as in its applied aspects, having remarkable disciplinary improvements, which have increased its contribution in fields such as Physics and Engineering and other more innovative such as Economics, Biology or Medicine.

Duration: 4 academic years
RUCT code: 2500172
Seats number: 110

Dean or center director:
MARIA ELENA VAZQUEZ CENDON

Title coordinator:
Rosana Rodríguez López
rosana.rodriguez.lopez [at] usc.es

Use languages:
Spanish, Galician

MECES Level: 2

Coordinator university:
University of Santiago de Compostela

Partaker universities:
University of Santiago de Compostela

Xunta de Galicia title implantation authorization date:
Decreto 154/2008 do 17 de xullo (DOG 30/08/2008)

BOE publication date:
16 de febrero de 2009

Last accreditation date:
22/06/2021

Mathematics has a millennial tradition, both as a scientific field as in its applied aspects. Moreover, it had remarkable disciplinary improvements, which have increased its contribution in fields such as Physics and Engineering, and other more innovative such as Economics, Biology or Medicine.

Being Mathematics an essential field for a developed society, the person who graduates in the Degree of Mathematics in our Faculty develops and strengths some skills very valued both in the academic and professional field. Therefore, the graduate student can opt for the highest categories in the public function, and this person will be qualified for the mathematical formulation, analysis, solution and, in that case, technological treatment of problems corresponding different interdisciplinary fields from the basic sciences, social and life sciences, engineering, finances, consulting, etc., looking into the applications, research and/or education, and in order to become part of interdisciplinary teams.

Elements of Probability and Statistics

  • G1011101
  •  
  • Basic Training
  •  
  • First Semester
  •  
  • 6 Credits

Basic Biology

  • G1011102
  •  
  • Basic Training
  •  
  • Second Semester
  •  
  • 6 Credits

Computer Science

  • G1011103
  •  
  • Basic Training
  •  
  • First Semester
  •  
  • 6 Credits

Continuity and Derivability of One Real Variable

  • G1011104
  •  
  • Basic Training
  •  
  • Second Semester
  •  
  • 6 Credits

Introduction to Mathematical Analysis

  • G1011105
  •  
  • Basic Training
  •  
  • First Semester
  •  
  • 6 Credits

Vector Spaces and Matrix Calculus

  • G1011106
  •  
  • Basic Training
  •  
  • Second Semester
  •  
  • 6 Credits

Mathematical Language, Sets and Numbers

  • G1011107
  •  
  • Basic Training
  •  
  • First Semester
  •  
  • 6 Credits

Integration of One Real Variable Functions

  • G1011108
  •  
  • Basic Training
  •  
  • Second Semester
  •  
  • 6 Credits

Basic Chemistry

  • G1011109
  •  
  • Basic Training
  •  
  • First Semester
  •  
  • 6 Credits

Topology of Euclidian Spaces

  • G1011110
  •  
  • Basic Training
  •  
  • Second Semester
  •  
  • 6 Credits

Basic Physics

  • G1011201
  •  
  • Basic Training
  •  
  • First Semester
  •  
  • 6 Credits

Linear and Multilinear Algebra

  • G1011221
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Matrix Numerical Analysis

  • G1011222
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Numerical Computing in One Variable

  • G1011223
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Curves and Surfaces

  • G1011224
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Differentiation of Several Real Variables Functions

  • G1011225
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Introduction to Ordinary Differential Equations

  • G1011226
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Linear and Integer Programming

  • G1011227
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Functional Series and Riemann Integration in Several Real Variables

  • G1011228
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Linear Geometry

  • G1011229
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Vector Calculus and Lebesgue Integration

  • G1011321
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Ordinary Differential Equations

  • G1011322
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 4,5 Credits

Algebraic Equations

  • G1011323
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Probability and Statistics

  • G1011324
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Statistical Inference

  • G1011325
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Algebraic Structures

  • G1011326
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Global Theory of Surfaces

  • G1011327
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Numerical Methods in Optimization and Differential Equations

  • G1011328
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Fourier Series and Introduction to Partial Differential Equations

  • G1011329
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 4,5 Credits

General Topology

  • G1011330
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 4,5 Credits

Topology of Surfaces

  • G1011331
  •  
  • Compulsory Credits
  •  
  • Second Semester
  •  
  • 4,5 Credits

Mathematical Modelling

  • G1011421
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Complex Variable

  • G1011422
  •  
  • Compulsory Credits
  •  
  • First Semester
  •  
  • 6 Credits

Undergraduate dissertation

  • G1011423
  •  
  • Compulsory Credits
  •  
  • End of Degree Projects and End of Master's Degree Projects
  •  
  • 12 Credits

Error-Correcting Codes and Cryptography

  • G1011441
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Functional Analysis on Hilbert´s Spaces

  • G1011442
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Fundamentals of Astronomy

  • G1011443
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Regression Models and Multivariate Analysis

  • G1011444
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Workshop on Numerical Simulation

  • G1011445
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Differentiable Manifolds

  • G1011446
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Algebra, Numbers and Geometry

  • G1011447
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Numerical Analysis of Partial Differential Equations

  • G1011448
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Differential Equations

  • G1011449
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

History of Mathematics

  • G1011450
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Game Theory

  • G1011451
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Algebraic Topology

  • G1011452
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Professional training placement

  • G1011453
  •  
  • Elective Credits
  •  
  • Work Placements in Companies for Degrees and Master's Degrees
  •  
  • 6 Credits

No se contemplan

Error-Correcting Codes and Cryptography

  • G1011441
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Functional Analysis on Hilbert´s Spaces

  • G1011442
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Fundamentals of Astronomy

  • G1011443
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Regression Models and Multivariate Analysis

  • G1011444
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Workshop on Numerical Simulation

  • G1011445
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Differentiable Manifolds

  • G1011446
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Algebra, Numbers and Geometry

  • G1011447
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Numerical Analysis of Partial Differential Equations

  • G1011448
  •  
  • Elective Credits
  •  
  • First Semester
  •  
  • 6 Credits

Differential Equations

  • G1011449
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

History of Mathematics

  • G1011450
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Game Theory

  • G1011451
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Algebraic Topology

  • G1011452
  •  
  • Elective Credits
  •  
  • Second Semester
  •  
  • 6 Credits

Professional training placement

  • G1011453
  •  
  • Elective Credits
  •  
  • Work Placements in Companies for Degrees and Master's Degrees
  •  
  • 6 Credits

No se contemplan

Access to Bachelor’s Degree programmes is granted to students with the following degrees/ diplomas or studies, or any other recognized as equivalent to these:

  • A.1. Spanish Bachiller, European Baccalaureate or International Baccalaureate.
  • A.2. Baccalaureate from European Union Member States’ education systems or other countries withinternational agreements.
  • A.3. Advanced Technician in Vocational Training, Advanced Technician in Plastic Arts and Design orAdvanced Technician in Sports Education, from the Spanish Education System.
  • A.4.Studies carried out in European Union Member States or in other countries with international reciprocal agreements which meet the academic requirements in those States to access their university study programmes.
  • A.5. Official Spanish university degrees of Diplomado, Arquitecto Técnico, Ingeniero Técnico, Licenciado, Arquitecto, Ingeniero, Graduado or Máster Universitario.
  • A.6. Partial (foreign or Spanish) university studies.

Access to Bachelor’s Degree programmes is also possible for:

  • B.1. People over twenty-five after successfully passing a specific access test.
  • B.2. People over forty with work or professional experience related to a university field of knowledge.
  • B.3. People over forty-five after successfully passing a specific access test.

Likewise, access to Bachelor’s Degree programmes is granted to:

  • C.1. People meeting the requirements to enter university according to the Spanish Education System regulations prior to Ley Orgánica 8/2013, of December 9."

Dado que no se exige ninguna formación previa específica, ya que los alumnos pueden ser admitidos en la titulación de Grado de Matemáticas si reúnen los requisitos de acceso que marca la ley y puesto que no se establece un límite de plazas, se recomienda para el ingreso en el Grado en Matemáticas que la formación del alumno sea de perfil científico-tecnológico. Dentro de este perfil, además de las matemáticas, resulta recomendable, pero no imprescindible, cursar materias de biología, física y química.

Cualidades deseables del futuro estudiante del Grado de Matemáticas:

- Gusto por resolver problemas
- Habilidad en el cálculo
- Rapidez mental
- Visión geométrica en el espacio
- Capacidad de argumento lógico

1.- El alumnado de primer curso por primera vez a tiempo completo tienen que matricular 60 créditos. Un 15% del alumnado podrá cursar estudios a tiempo parcial (30 créditos).
2.- Continuación de estudios: libre con un máximo de 75 créditos

La USC tiene un programa de alumnos tutores para las titulaciones de grao, de forma que alumnos de últimos cursos, despues de una formación que les facilita la Universidad, realizan tareas de orientación a los alumnos que inician los estudios.

Información programa alumnos tutores:

Programa alumnos titores

Cuando se produzca la suspensión de un Título oficial, la USC garantiza el adecuado desarrollo efectivo de las enseñanzas que hubieran iniciado sus estudiantes hasta su finalización. Para ello, el Consejo de Gobierno aprueba los criterios relacionados, entre otros, con:
• La admisión de matrículas de nuevo ingreso en la titulación.
• La supresión gradual de la impartición de la docencia.
• Si el título extinguido es sustituido por otro similar (modificando la naturaleza del título), fija las condiciones que facilitan a los/las estudiantes la continuidad de estudios en el nuevo título y las equivalencias entre las materias de uno y otro plan.

Access to Bachelor’s Degree programmes is granted to students with the following degrees/ diplomas or studies, or any other recognized as equivalent to these:
A.1. Spanish Bachiller, European Baccalaureate or International Baccalaureate.
A.2. Baccalaureate from European Union Member States’ education systems or other countries withinternational agreements.
A.3. Advanced Technician in Vocational Training, Advanced Technician in Plastic Arts and Design orAdvanced Technician in Sports Education, from the Spanish Education System.
A.4.Studies carried out in European Union Member States or in other countries with international reciprocal agreements which meet the academic requirements in those States to access their university study programmes.
A.5. Official Spanish university degrees of Diplomado, Arquitecto Técnico, Ingeniero Técnico, Licenciado, Arquitecto, Ingeniero, Graduado or Máster Universitario.
A.6. Partial (foreign or Spanish) university studies.
Access to Bachelor’s Degree programmes is also possible for:
B.1. People over twenty-five after successfully passing a specific access test.
B.2. People over forty with work or professional experience related to a university field of knowledge.
B.3. People over forty-five after successfully passing a specific access test.
Likewise, access to Bachelor’s Degree programmes is granted to:
C.1. People meeting the requirements to enter university according to the Spanish Education System regulations prior to Ley Orgánica 8/2013, of December 9.

The Faculty of Mathematics has 10 rooms with different capacity and with teaching equipment. Furthermore, it has five computing rooms used in teaching and one is intended to the free access for the student. Moreover, it uses external facilities such as Astronomical Observatory.

Most of the subjects taught in the degree are expected to be combined with the virtual teaching platform from the USC.

The centre has both a library and study rooms. The library has more than 250 reading points, which are divided in two floors and it holds bibliographical collections including books reserved to the students and general works as well as research books. Moreover, the students have access to the Library of the Astronomical Observatory Ramón María Aller.

It is important also to mention that from every place in the Faculty there is wireless Internet connection.

1. To train students in the nature, methods and aims of the most relevant branches of Mathematics, preparing them for entry into the job market or for the undertaking of further study with a high degree of autonomy in scientific or technological disciplines.
2. To enable students develop analytic and abstraction capabilities, intuition, and logical and rigorous thinking.
3. To make students understand that Mathematics is an integral part of education and culture, so that they come to appreciate its presence in nature through science, technology and art.
4. To instil in students respect for equality of rights between men and women, for human rights, and for the principles of equal opportunities, non discrimination and accessibility of disabled people

Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio;

Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio;

Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética;

Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado;

Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

1. To understand the key concepts, methods and results from the different areas of Mathematics, and be acquainted with their historical development.
2. To gather and interpret data, information and relevant results, draw conclusions, and produce reports on problems of a scientific, technical or mathematically tractable nature.
3. To apply theoretical and practical skills and analytical and abstraction capabilities to the definition and formulation of problems and to problem-solving in academic and professional contexts.
4. To communicate with accuracy and clarity, both in writing and orally, knowledge, procedures, results and mathematical arguments to expert and non-expert audiences.
5. To study and learn independently, managing time and resources, new ideas and techniques in any scientific or technological discipline

1. Comprender y utilizar el lenguaje matemático.
2. Conocer demostraciones rigurosas de algunos teoremas clásicos.
3. Saber abstraer las propiedades y hechos sustanciales de un problema, distinguiéndolas de aquellas otras puramente circunstanciales.
4. Proponer, validar e interpretar modelos matemáticos de situaciones reales sencillas.
5. Planificar y ejecutar algoritmos y métodos matemáticos para resolver problemas
6. Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, optimización y software científico, para experimentar en matemáticas y resolver problemas.

Mobility

La movilidad de los/as estudiantes está regulada a través del “Reglamento de intercambios interuniversitarios”. A través de la Oficina de Relaciones Exteriores se gestionan programas de intercambio tanto nacionales (SICUE), como europeos (ERASMUS) y extracomunitarios (intercambios con países de América Latina o países de habla inglesa):

Portal Internacional

Internships

Según el Art. 12.6 del R.D. 1393/2007, los estudiantes podrán obtener reconocimiento académico de un máximo de 6 créditos optativos por realización de prácticas externas relacionadas con el título. Las prácticas externas no forman parte de la oferta académica permanente de la Facultad, aunque esta colaborará con los órganos responsables de la Universidad en la organización de estas cómo oferta académica complementaria en la formación de sus estudiantes.

Los alumnos podrán inscribirse una vez superados 192 créditos obligatorios. Para poder presentarlo deberán tener superados, cuando menos, 228. A Facultade ofrecerá trabajos de fin de grado en ambos dos cuatrimestres.

Faculty
Fernando Alcalde Cuesta
Maria Alonso Pena
Leovigildo Alonso Tarrio
Jose Antonio Alvarez Dios
Jesús Antonio Álvarez López
Raul Alvite Pazo
Anton Barreiro Iglesias
Maria Isabel Borrajo Garcia
Sebastian Buedo Fernandez
Alberto Cabada Fernandez
Eva Maria Candal Suarez
Daniel Cao Labora
Jose Manuel Carballes Vazquez
Maria Angeles Casares De Cal
Balbina Virginia Casas Mendez
Eva Cernadas García
Angel Cidre Diaz
Mercedes Conde Amboage
Victor Cora Calvo
Maria Cristina Costoya Ramos
Rosa María Crujeiras Casais
Pablo Alfonso Del Pino Gonzalez De La Higuera
Jose Carlos Diaz Ramos
Érika Diz Pita
Manuel Febrero Bande
Manuel Fernandez Delgado
Francisco Javier Fernandez Fernandez
Rosa Mª Fernandez Rodriguez
Fernando Adrian Fernandez Tojo
Samuel Funes Hernando
Felipe Gago Couso
Eduardo Garcia Rio
Antonio Garcia Rodicio
Maria Soledad Garcia Tasende
Ignacio Gomez Casares
Antonio M. Gómez Tato
Julio Gonzalez Diaz
Wenceslao Gonzalez Manteiga
Ana Jeremías López
Manuel Eulogio Ladra Gonzalez
Anton Manoel Leira Campos
Raul Lois Cuns
Óscar López Pouso
Rodrigo Lopez Pouso
Lucia Lopez Somoza
Jorge Losada Rodriguez
Enrique Macías Virgós
Alejandro Omar Majadas Moure
José Javier Majadas Soto
Trinidad Mendez Morales
Diego Mojon Alvarez
Rafael Muñoz Sola
Begoña Nicolas Avila
Juan José Nieto Roig
Maria Victoria Otero Espinar
Maria Pilar Paez Guillan
Beatriz Pateiro Lopez
Francisco Jose Pena Brage
Ana Peon Nieto
Miguel Picos Maiztegui
Peregrina Quintela Estevez
Brais Ramos Perez
Oscar Rivero Salgado
Iria Rodríguez Acevedo
Alberto Rodriguez Casal
Jeronimo Rodriguez Garcia
Jorge Rodríguez López
Rosana Rodríguez López
Jonatan Rodríguez Parra
Daniel Romaus Sanjurjo
Maria Del Pilar Salgado Rodriguez
Modesto Ramon Salgado Seco
Mª Ángeles Sánchez González
Cesar Andres Sanchez Sellero
Victor Sanmartin Lopez
Maria Luisa Seoane Martinez
Antonio Topete Camacho
Rosa Mª Trinchet Soria
María Elena Vázquez Abal
Rafael Vazquez Hernandez
Juan Manuel Viaño Rey
Maria Vidal Garcia
The contents of this page were updated on 07.03.2023.