Mathematics has a millennial tradition, both as a scientific field as in its applied aspects, having remarkable disciplinary improvements, which have increased its contribution in fields such as Physics and Engineering and other more innovative such as Economics, Biology or Medicine.
Mathematics Degree
Duration:
4 academic years
RUCT code: 2500172
Seats number: 110
Dean or center director:
MARIA ELENA VAZQUEZ CENDON
Title coordinator:
Rosana Rodríguez López
rosana.rodriguez.lopez [at] usc.es
Use languages:
Spanish, Galician
MECES Level: 2
Coordinator university:
University of Santiago de Compostela
Partaker universities:
University of Santiago de Compostela
Xunta de Galicia title implantation authorization date:
Decreto 154/2008 do 17 de xullo (DOG 30/08/2008)
BOE publication date:
16 de febrero de 2009
Last accreditation date:
22/06/2021
Mathematics has a millennial tradition, both as a scientific field as in its applied aspects. Moreover, it had remarkable disciplinary improvements, which have increased its contribution in fields such as Physics and Engineering, and other more innovative such as Economics, Biology or Medicine.
Being Mathematics an essential field for a developed society, the person who graduates in the Degree of Mathematics in our Faculty develops and strengths some skills very valued both in the academic and professional field. Therefore, the graduate student can opt for the highest categories in the public function, and this person will be qualified for the mathematical formulation, analysis, solution and, in that case, technological treatment of problems corresponding different interdisciplinary fields from the basic sciences, social and life sciences, engineering, finances, consulting, etc., looking into the applications, research and/or education, and in order to become part of interdisciplinary teams.
Elements of Probability and Statistics
- G1011101
- Basic Training
- First Semester
- 6 Credits
Basic Biology
- G1011102
- Basic Training
- Second Semester
- 6 Credits
Computer Science
- G1011103
- Basic Training
- First Semester
- 6 Credits
Continuity and Derivability of One Real Variable
- G1011104
- Basic Training
- Second Semester
- 6 Credits
Introduction to Mathematical Analysis
- G1011105
- Basic Training
- First Semester
- 6 Credits
Vector Spaces and Matrix Calculus
- G1011106
- Basic Training
- Second Semester
- 6 Credits
Mathematical Language, Sets and Numbers
- G1011107
- Basic Training
- First Semester
- 6 Credits
Integration of One Real Variable Functions
- G1011108
- Basic Training
- Second Semester
- 6 Credits
Basic Chemistry
- G1011109
- Basic Training
- First Semester
- 6 Credits
Topology of Euclidian Spaces
- G1011110
- Basic Training
- Second Semester
- 6 Credits
Basic Physics
- G1011201
- Basic Training
- First Semester
- 6 Credits
Linear and Multilinear Algebra
- G1011221
- Compulsory Credits
- First Semester
- 6 Credits
Matrix Numerical Analysis
- G1011222
- Compulsory Credits
- Second Semester
- 6 Credits
Numerical Computing in One Variable
- G1011223
- Compulsory Credits
- First Semester
- 6 Credits
Curves and Surfaces
- G1011224
- Compulsory Credits
- Second Semester
- 6 Credits
Differentiation of Several Real Variables Functions
- G1011225
- Compulsory Credits
- First Semester
- 6 Credits
Introduction to Ordinary Differential Equations
- G1011226
- Compulsory Credits
- Second Semester
- 6 Credits
Linear and Integer Programming
- G1011227
- Compulsory Credits
- First Semester
- 6 Credits
Functional Series and Riemann Integration in Several Real Variables
- G1011228
- Compulsory Credits
- Second Semester
- 6 Credits
Linear Geometry
- G1011229
- Compulsory Credits
- Second Semester
- 6 Credits
Vector Calculus and Lebesgue Integration
- G1011321
- Compulsory Credits
- First Semester
- 6 Credits
Ordinary Differential Equations
- G1011322
- Compulsory Credits
- First Semester
- 4,5 Credits
Algebraic Equations
- G1011323
- Compulsory Credits
- Second Semester
- 6 Credits
Probability and Statistics
- G1011324
- Compulsory Credits
- First Semester
- 6 Credits
Statistical Inference
- G1011325
- Compulsory Credits
- Second Semester
- 6 Credits
Algebraic Structures
- G1011326
- Compulsory Credits
- First Semester
- 6 Credits
Global Theory of Surfaces
- G1011327
- Compulsory Credits
- Second Semester
- 6 Credits
Numerical Methods in Optimization and Differential Equations
- G1011328
- Compulsory Credits
- First Semester
- 6 Credits
Fourier Series and Introduction to Partial Differential Equations
- G1011329
- Compulsory Credits
- Second Semester
- 4,5 Credits
General Topology
- G1011330
- Compulsory Credits
- First Semester
- 4,5 Credits
Topology of Surfaces
- G1011331
- Compulsory Credits
- Second Semester
- 4,5 Credits
Mathematical Modelling
- G1011421
- Compulsory Credits
- First Semester
- 6 Credits
Complex Variable
- G1011422
- Compulsory Credits
- First Semester
- 6 Credits
Undergraduate dissertation
- G1011423
- Compulsory Credits
- End of Degree Projects and End of Master's Degree Projects
- 12 Credits
Error-Correcting Codes and Cryptography
- G1011441
- Elective Credits
- Second Semester
- 6 Credits
Functional Analysis on Hilbert´s Spaces
- G1011442
- Elective Credits
- First Semester
- 6 Credits
Fundamentals of Astronomy
- G1011443
- Elective Credits
- First Semester
- 6 Credits
Regression Models and Multivariate Analysis
- G1011444
- Elective Credits
- First Semester
- 6 Credits
Workshop on Numerical Simulation
- G1011445
- Elective Credits
- Second Semester
- 6 Credits
Differentiable Manifolds
- G1011446
- Elective Credits
- First Semester
- 6 Credits
Algebra, Numbers and Geometry
- G1011447
- Elective Credits
- Second Semester
- 6 Credits
Numerical Analysis of Partial Differential Equations
- G1011448
- Elective Credits
- First Semester
- 6 Credits
Differential Equations
- G1011449
- Elective Credits
- Second Semester
- 6 Credits
History of Mathematics
- G1011450
- Elective Credits
- Second Semester
- 6 Credits
Game Theory
- G1011451
- Elective Credits
- Second Semester
- 6 Credits
Algebraic Topology
- G1011452
- Elective Credits
- Second Semester
- 6 Credits
Professional training placement
- G1011453
- Elective Credits
- Work Placements in Companies for Degrees and Master's Degrees
- 6 Credits
No se contemplan
Vector Spaces and Matrix Calculus
- G1011106
- Basic Training
- Second Semester
- 6 Credits
Linear and Multilinear Algebra
- G1011221
- Compulsory Credits
- First Semester
- 6 Credits
Linear Geometry
- G1011229
- Compulsory Credits
- Second Semester
- 6 Credits
Continuity and Derivability of One Real Variable
- G1011104
- Basic Training
- Second Semester
- 6 Credits
Introduction to Mathematical Analysis
- G1011105
- Basic Training
- First Semester
- 6 Credits
Integration of One Real Variable Functions
- G1011108
- Basic Training
- Second Semester
- 6 Credits
Complex Variable
- G1011422
- Compulsory Credits
- First Semester
- 6 Credits
Differentiation of Several Real Variables Functions
- G1011225
- Compulsory Credits
- First Semester
- 6 Credits
Functional Series and Riemann Integration in Several Real Variables
- G1011228
- Compulsory Credits
- Second Semester
- 6 Credits
Vector Calculus and Lebesgue Integration
- G1011321
- Compulsory Credits
- First Semester
- 6 Credits
Introduction to Ordinary Differential Equations
- G1011226
- Compulsory Credits
- Second Semester
- 6 Credits
Ordinary Differential Equations
- G1011322
- Compulsory Credits
- First Semester
- 4,5 Credits
Fourier Series and Introduction to Partial Differential Equations
- G1011329
- Compulsory Credits
- Second Semester
- 4,5 Credits
Algebraic Equations
- G1011323
- Compulsory Credits
- Second Semester
- 6 Credits
Algebraic Structures
- G1011326
- Compulsory Credits
- First Semester
- 6 Credits
Curves and Surfaces
- G1011224
- Compulsory Credits
- Second Semester
- 6 Credits
Global Theory of Surfaces
- G1011327
- Compulsory Credits
- Second Semester
- 6 Credits
Matrix Numerical Analysis
- G1011222
- Compulsory Credits
- Second Semester
- 6 Credits
Numerical Computing in One Variable
- G1011223
- Compulsory Credits
- First Semester
- 6 Credits
Numerical Methods in Optimization and Differential Equations
- G1011328
- Compulsory Credits
- First Semester
- 6 Credits
Elements of Probability and Statistics
- G1011101
- Basic Training
- First Semester
- 6 Credits
Linear and Integer Programming
- G1011227
- Compulsory Credits
- First Semester
- 6 Credits
Probability and Statistics
- G1011324
- Compulsory Credits
- First Semester
- 6 Credits
Statistical Inference
- G1011325
- Compulsory Credits
- Second Semester
- 6 Credits
Topology of Euclidian Spaces
- G1011110
- Basic Training
- Second Semester
- 6 Credits
General Topology
- G1011330
- Compulsory Credits
- First Semester
- 4,5 Credits
Topology of Surfaces
- G1011331
- Compulsory Credits
- Second Semester
- 4,5 Credits
Mathematical Modelling
- G1011421
- Compulsory Credits
- First Semester
- 6 Credits
Basic Biology
- G1011102
- Basic Training
- Second Semester
- 6 Credits
Computer Science
- G1011103
- Basic Training
- First Semester
- 6 Credits
Mathematical Language, Sets and Numbers
- G1011107
- Basic Training
- First Semester
- 6 Credits
Basic Chemistry
- G1011109
- Basic Training
- First Semester
- 6 Credits
Basic Physics
- G1011201
- Basic Training
- First Semester
- 6 Credits
Error-Correcting Codes and Cryptography
- G1011441
- Elective Credits
- Second Semester
- 6 Credits
Functional Analysis on Hilbert´s Spaces
- G1011442
- Elective Credits
- First Semester
- 6 Credits
Fundamentals of Astronomy
- G1011443
- Elective Credits
- First Semester
- 6 Credits
Regression Models and Multivariate Analysis
- G1011444
- Elective Credits
- First Semester
- 6 Credits
Workshop on Numerical Simulation
- G1011445
- Elective Credits
- Second Semester
- 6 Credits
Differentiable Manifolds
- G1011446
- Elective Credits
- First Semester
- 6 Credits
Algebra, Numbers and Geometry
- G1011447
- Elective Credits
- Second Semester
- 6 Credits
Numerical Analysis of Partial Differential Equations
- G1011448
- Elective Credits
- First Semester
- 6 Credits
Differential Equations
- G1011449
- Elective Credits
- Second Semester
- 6 Credits
History of Mathematics
- G1011450
- Elective Credits
- Second Semester
- 6 Credits
Game Theory
- G1011451
- Elective Credits
- Second Semester
- 6 Credits
Algebraic Topology
- G1011452
- Elective Credits
- Second Semester
- 6 Credits
Professional training placement
- G1011453
- Elective Credits
- Work Placements in Companies for Degrees and Master's Degrees
- 6 Credits
Undergraduate dissertation
- G1011423
- Compulsory Credits
- End of Degree Projects and End of Master's Degree Projects
- 12 Credits
Reconocimiento de créditos optativos sin equivalencia en el grado
- G1011RNOEQUIV00
- Elective Credits
- 1 Credits
No se contemplan
Access to Bachelor’s Degree programmes is granted to students with the following degrees/ diplomas or studies, or any other recognized as equivalent to these:
- A.1. Spanish Bachiller, European Baccalaureate or International Baccalaureate.
- A.2. Baccalaureate from European Union Member States’ education systems or other countries withinternational agreements.
- A.3. Advanced Technician in Vocational Training, Advanced Technician in Plastic Arts and Design orAdvanced Technician in Sports Education, from the Spanish Education System.
- A.4.Studies carried out in European Union Member States or in other countries with international reciprocal agreements which meet the academic requirements in those States to access their university study programmes.
- A.5. Official Spanish university degrees of Diplomado, Arquitecto Técnico, Ingeniero Técnico, Licenciado, Arquitecto, Ingeniero, Graduado or Máster Universitario.
- A.6. Partial (foreign or Spanish) university studies.
Access to Bachelor’s Degree programmes is also possible for:
- B.1. People over twenty-five after successfully passing a specific access test.
- B.2. People over forty with work or professional experience related to a university field of knowledge.
- B.3. People over forty-five after successfully passing a specific access test.
Likewise, access to Bachelor’s Degree programmes is granted to:
- C.1. People meeting the requirements to enter university according to the Spanish Education System regulations prior to Ley Orgánica 8/2013, of December 9."
Dado que no se exige ninguna formación previa específica, ya que los alumnos pueden ser admitidos en la titulación de Grado de Matemáticas si reúnen los requisitos de acceso que marca la ley y puesto que no se establece un límite de plazas, se recomienda para el ingreso en el Grado en Matemáticas que la formación del alumno sea de perfil científico-tecnológico. Dentro de este perfil, además de las matemáticas, resulta recomendable, pero no imprescindible, cursar materias de biología, física y química.
Cualidades deseables del futuro estudiante del Grado de Matemáticas:
- Gusto por resolver problemas
- Habilidad en el cálculo
- Rapidez mental
- Visión geométrica en el espacio
- Capacidad de argumento lógico
1.- El alumnado de primer curso por primera vez a tiempo completo tienen que matricular 60 créditos. Un 15% del alumnado podrá cursar estudios a tiempo parcial (30 créditos).
2.- Continuación de estudios: libre con un máximo de 75 créditos
La USC tiene un programa de alumnos tutores para las titulaciones de grao, de forma que alumnos de últimos cursos, despues de una formación que les facilita la Universidad, realizan tareas de orientación a los alumnos que inician los estudios.
Información programa alumnos tutores:
Cuando se produzca la suspensión de un Título oficial, la USC garantiza el adecuado desarrollo efectivo de las enseñanzas que hubieran iniciado sus estudiantes hasta su finalización. Para ello, el Consejo de Gobierno aprueba los criterios relacionados, entre otros, con:
• La admisión de matrículas de nuevo ingreso en la titulación.
• La supresión gradual de la impartición de la docencia.
• Si el título extinguido es sustituido por otro similar (modificando la naturaleza del título), fija las condiciones que facilitan a los/las estudiantes la continuidad de estudios en el nuevo título y las equivalencias entre las materias de uno y otro plan.
Access to Bachelor’s Degree programmes is granted to students with the following degrees/ diplomas or studies, or any other recognized as equivalent to these:
A.1. Spanish Bachiller, European Baccalaureate or International Baccalaureate.
A.2. Baccalaureate from European Union Member States’ education systems or other countries withinternational agreements.
A.3. Advanced Technician in Vocational Training, Advanced Technician in Plastic Arts and Design orAdvanced Technician in Sports Education, from the Spanish Education System.
A.4.Studies carried out in European Union Member States or in other countries with international reciprocal agreements which meet the academic requirements in those States to access their university study programmes.
A.5. Official Spanish university degrees of Diplomado, Arquitecto Técnico, Ingeniero Técnico, Licenciado, Arquitecto, Ingeniero, Graduado or Máster Universitario.
A.6. Partial (foreign or Spanish) university studies.
Access to Bachelor’s Degree programmes is also possible for:
B.1. People over twenty-five after successfully passing a specific access test.
B.2. People over forty with work or professional experience related to a university field of knowledge.
B.3. People over forty-five after successfully passing a specific access test.
Likewise, access to Bachelor’s Degree programmes is granted to:
C.1. People meeting the requirements to enter university according to the Spanish Education System regulations prior to Ley Orgánica 8/2013, of December 9.
The Faculty of Mathematics has 10 rooms with different capacity and with teaching equipment. Furthermore, it has five computing rooms used in teaching and one is intended to the free access for the student. Moreover, it uses external facilities such as Astronomical Observatory.
Most of the subjects taught in the degree are expected to be combined with the virtual teaching platform from the USC.
The centre has both a library and study rooms. The library has more than 250 reading points, which are divided in two floors and it holds bibliographical collections including books reserved to the students and general works as well as research books. Moreover, the students have access to the Library of the Astronomical Observatory Ramón María Aller.
It is important also to mention that from every place in the Faculty there is wireless Internet connection.
1. To train students in the nature, methods and aims of the most relevant branches of Mathematics, preparing them for entry into the job market or for the undertaking of further study with a high degree of autonomy in scientific or technological disciplines.
2. To enable students develop analytic and abstraction capabilities, intuition, and logical and rigorous thinking.
3. To make students understand that Mathematics is an integral part of education and culture, so that they come to appreciate its presence in nature through science, technology and art.
4. To instil in students respect for equality of rights between men and women, for human rights, and for the principles of equal opportunities, non discrimination and accessibility of disabled people
Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio;
Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio;
Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética;
Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado;
Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
1. To understand the key concepts, methods and results from the different areas of Mathematics, and be acquainted with their historical development.
2. To gather and interpret data, information and relevant results, draw conclusions, and produce reports on problems of a scientific, technical or mathematically tractable nature.
3. To apply theoretical and practical skills and analytical and abstraction capabilities to the definition and formulation of problems and to problem-solving in academic and professional contexts.
4. To communicate with accuracy and clarity, both in writing and orally, knowledge, procedures, results and mathematical arguments to expert and non-expert audiences.
5. To study and learn independently, managing time and resources, new ideas and techniques in any scientific or technological discipline
1. Comprender y utilizar el lenguaje matemático.
2. Conocer demostraciones rigurosas de algunos teoremas clásicos.
3. Saber abstraer las propiedades y hechos sustanciales de un problema, distinguiéndolas de aquellas otras puramente circunstanciales.
4. Proponer, validar e interpretar modelos matemáticos de situaciones reales sencillas.
5. Planificar y ejecutar algoritmos y métodos matemáticos para resolver problemas
6. Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, optimización y software científico, para experimentar en matemáticas y resolver problemas.
Mobility
La movilidad de los/as estudiantes está regulada a través del “Reglamento de intercambios interuniversitarios”. A través de la Oficina de Relaciones Exteriores se gestionan programas de intercambio tanto nacionales (SICUE), como europeos (ERASMUS) y extracomunitarios (intercambios con países de América Latina o países de habla inglesa):
Internships
Según el Art. 12.6 del R.D. 1393/2007, los estudiantes podrán obtener reconocimiento académico de un máximo de 6 créditos optativos por realización de prácticas externas relacionadas con el título. Las prácticas externas no forman parte de la oferta académica permanente de la Facultad, aunque esta colaborará con los órganos responsables de la Universidad en la organización de estas cómo oferta académica complementaria en la formación de sus estudiantes.
Los alumnos podrán inscribirse una vez superados 192 créditos obligatorios. Para poder presentarlo deberán tener superados, cuando menos, 228. A Facultade ofrecerá trabajos de fin de grado en ambos dos cuatrimestres.
Duration:
4 academic years
RUCT code: 2500172
Seats number: 110
Dean or center director:
MARIA ELENA VAZQUEZ CENDON
Title coordinator:
Rosana Rodríguez López
rosana.rodriguez.lopez [at] usc.es
Use languages:
Spanish, Galician
MECES Level: 2
Coordinator university:
University of Santiago de Compostela
Partaker universities:
University of Santiago de Compostela
Xunta de Galicia title implantation authorization date:
Decreto 154/2008 do 17 de xullo (DOG 30/08/2008)
BOE publication date:
16 de febrero de 2009
Last accreditation date:
22/06/2021
Mathematics has a millennial tradition, both as a scientific field as in its applied aspects. Moreover, it had remarkable disciplinary improvements, which have increased its contribution in fields such as Physics and Engineering, and other more innovative such as Economics, Biology or Medicine.
Being Mathematics an essential field for a developed society, the person who graduates in the Degree of Mathematics in our Faculty develops and strengths some skills very valued both in the academic and professional field. Therefore, the graduate student can opt for the highest categories in the public function, and this person will be qualified for the mathematical formulation, analysis, solution and, in that case, technological treatment of problems corresponding different interdisciplinary fields from the basic sciences, social and life sciences, engineering, finances, consulting, etc., looking into the applications, research and/or education, and in order to become part of interdisciplinary teams.
Elements of Probability and Statistics
- G1011101
- Basic Training
- First Semester
- 6 Credits
Basic Biology
- G1011102
- Basic Training
- Second Semester
- 6 Credits
Computer Science
- G1011103
- Basic Training
- First Semester
- 6 Credits
Continuity and Derivability of One Real Variable
- G1011104
- Basic Training
- Second Semester
- 6 Credits
Introduction to Mathematical Analysis
- G1011105
- Basic Training
- First Semester
- 6 Credits
Vector Spaces and Matrix Calculus
- G1011106
- Basic Training
- Second Semester
- 6 Credits
Mathematical Language, Sets and Numbers
- G1011107
- Basic Training
- First Semester
- 6 Credits
Integration of One Real Variable Functions
- G1011108
- Basic Training
- Second Semester
- 6 Credits
Basic Chemistry
- G1011109
- Basic Training
- First Semester
- 6 Credits
Topology of Euclidian Spaces
- G1011110
- Basic Training
- Second Semester
- 6 Credits
Basic Physics
- G1011201
- Basic Training
- First Semester
- 6 Credits
Linear and Multilinear Algebra
- G1011221
- Compulsory Credits
- First Semester
- 6 Credits
Matrix Numerical Analysis
- G1011222
- Compulsory Credits
- Second Semester
- 6 Credits
Numerical Computing in One Variable
- G1011223
- Compulsory Credits
- First Semester
- 6 Credits
Curves and Surfaces
- G1011224
- Compulsory Credits
- Second Semester
- 6 Credits
Differentiation of Several Real Variables Functions
- G1011225
- Compulsory Credits
- First Semester
- 6 Credits
Introduction to Ordinary Differential Equations
- G1011226
- Compulsory Credits
- Second Semester
- 6 Credits
Linear and Integer Programming
- G1011227
- Compulsory Credits
- First Semester
- 6 Credits
Functional Series and Riemann Integration in Several Real Variables
- G1011228
- Compulsory Credits
- Second Semester
- 6 Credits
Linear Geometry
- G1011229
- Compulsory Credits
- Second Semester
- 6 Credits
Vector Calculus and Lebesgue Integration
- G1011321
- Compulsory Credits
- First Semester
- 6 Credits
Ordinary Differential Equations
- G1011322
- Compulsory Credits
- First Semester
- 4,5 Credits
Algebraic Equations
- G1011323
- Compulsory Credits
- Second Semester
- 6 Credits
Probability and Statistics
- G1011324
- Compulsory Credits
- First Semester
- 6 Credits
Statistical Inference
- G1011325
- Compulsory Credits
- Second Semester
- 6 Credits
Algebraic Structures
- G1011326
- Compulsory Credits
- First Semester
- 6 Credits
Global Theory of Surfaces
- G1011327
- Compulsory Credits
- Second Semester
- 6 Credits
Numerical Methods in Optimization and Differential Equations
- G1011328
- Compulsory Credits
- First Semester
- 6 Credits
Fourier Series and Introduction to Partial Differential Equations
- G1011329
- Compulsory Credits
- Second Semester
- 4,5 Credits
General Topology
- G1011330
- Compulsory Credits
- First Semester
- 4,5 Credits
Topology of Surfaces
- G1011331
- Compulsory Credits
- Second Semester
- 4,5 Credits
Mathematical Modelling
- G1011421
- Compulsory Credits
- First Semester
- 6 Credits
Complex Variable
- G1011422
- Compulsory Credits
- First Semester
- 6 Credits
Undergraduate dissertation
- G1011423
- Compulsory Credits
- End of Degree Projects and End of Master's Degree Projects
- 12 Credits
Error-Correcting Codes and Cryptography
- G1011441
- Elective Credits
- Second Semester
- 6 Credits
Functional Analysis on Hilbert´s Spaces
- G1011442
- Elective Credits
- First Semester
- 6 Credits
Fundamentals of Astronomy
- G1011443
- Elective Credits
- First Semester
- 6 Credits
Regression Models and Multivariate Analysis
- G1011444
- Elective Credits
- First Semester
- 6 Credits
Workshop on Numerical Simulation
- G1011445
- Elective Credits
- Second Semester
- 6 Credits
Differentiable Manifolds
- G1011446
- Elective Credits
- First Semester
- 6 Credits
Algebra, Numbers and Geometry
- G1011447
- Elective Credits
- Second Semester
- 6 Credits
Numerical Analysis of Partial Differential Equations
- G1011448
- Elective Credits
- First Semester
- 6 Credits
Differential Equations
- G1011449
- Elective Credits
- Second Semester
- 6 Credits
History of Mathematics
- G1011450
- Elective Credits
- Second Semester
- 6 Credits
Game Theory
- G1011451
- Elective Credits
- Second Semester
- 6 Credits
Algebraic Topology
- G1011452
- Elective Credits
- Second Semester
- 6 Credits
Professional training placement
- G1011453
- Elective Credits
- Work Placements in Companies for Degrees and Master's Degrees
- 6 Credits
No se contemplan
Vector Spaces and Matrix Calculus
- G1011106
- Basic Training
- Second Semester
- 6 Credits
Linear and Multilinear Algebra
- G1011221
- Compulsory Credits
- First Semester
- 6 Credits
Linear Geometry
- G1011229
- Compulsory Credits
- Second Semester
- 6 Credits
Continuity and Derivability of One Real Variable
- G1011104
- Basic Training
- Second Semester
- 6 Credits
Introduction to Mathematical Analysis
- G1011105
- Basic Training
- First Semester
- 6 Credits
Integration of One Real Variable Functions
- G1011108
- Basic Training
- Second Semester
- 6 Credits
Complex Variable
- G1011422
- Compulsory Credits
- First Semester
- 6 Credits
Differentiation of Several Real Variables Functions
- G1011225
- Compulsory Credits
- First Semester
- 6 Credits
Functional Series and Riemann Integration in Several Real Variables
- G1011228
- Compulsory Credits
- Second Semester
- 6 Credits
Vector Calculus and Lebesgue Integration
- G1011321
- Compulsory Credits
- First Semester
- 6 Credits
Introduction to Ordinary Differential Equations
- G1011226
- Compulsory Credits
- Second Semester
- 6 Credits
Ordinary Differential Equations
- G1011322
- Compulsory Credits
- First Semester
- 4,5 Credits
Fourier Series and Introduction to Partial Differential Equations
- G1011329
- Compulsory Credits
- Second Semester
- 4,5 Credits
Algebraic Equations
- G1011323
- Compulsory Credits
- Second Semester
- 6 Credits
Algebraic Structures
- G1011326
- Compulsory Credits
- First Semester
- 6 Credits
Curves and Surfaces
- G1011224
- Compulsory Credits
- Second Semester
- 6 Credits
Global Theory of Surfaces
- G1011327
- Compulsory Credits
- Second Semester
- 6 Credits
Matrix Numerical Analysis
- G1011222
- Compulsory Credits
- Second Semester
- 6 Credits
Numerical Computing in One Variable
- G1011223
- Compulsory Credits
- First Semester
- 6 Credits
Numerical Methods in Optimization and Differential Equations
- G1011328
- Compulsory Credits
- First Semester
- 6 Credits
Elements of Probability and Statistics
- G1011101
- Basic Training
- First Semester
- 6 Credits
Linear and Integer Programming
- G1011227
- Compulsory Credits
- First Semester
- 6 Credits
Probability and Statistics
- G1011324
- Compulsory Credits
- First Semester
- 6 Credits
Statistical Inference
- G1011325
- Compulsory Credits
- Second Semester
- 6 Credits
Topology of Euclidian Spaces
- G1011110
- Basic Training
- Second Semester
- 6 Credits
General Topology
- G1011330
- Compulsory Credits
- First Semester
- 4,5 Credits
Topology of Surfaces
- G1011331
- Compulsory Credits
- Second Semester
- 4,5 Credits
Mathematical Modelling
- G1011421
- Compulsory Credits
- First Semester
- 6 Credits
Basic Biology
- G1011102
- Basic Training
- Second Semester
- 6 Credits
Computer Science
- G1011103
- Basic Training
- First Semester
- 6 Credits
Mathematical Language, Sets and Numbers
- G1011107
- Basic Training
- First Semester
- 6 Credits
Basic Chemistry
- G1011109
- Basic Training
- First Semester
- 6 Credits
Basic Physics
- G1011201
- Basic Training
- First Semester
- 6 Credits
Error-Correcting Codes and Cryptography
- G1011441
- Elective Credits
- Second Semester
- 6 Credits
Functional Analysis on Hilbert´s Spaces
- G1011442
- Elective Credits
- First Semester
- 6 Credits
Fundamentals of Astronomy
- G1011443
- Elective Credits
- First Semester
- 6 Credits
Regression Models and Multivariate Analysis
- G1011444
- Elective Credits
- First Semester
- 6 Credits
Workshop on Numerical Simulation
- G1011445
- Elective Credits
- Second Semester
- 6 Credits
Differentiable Manifolds
- G1011446
- Elective Credits
- First Semester
- 6 Credits
Algebra, Numbers and Geometry
- G1011447
- Elective Credits
- Second Semester
- 6 Credits
Numerical Analysis of Partial Differential Equations
- G1011448
- Elective Credits
- First Semester
- 6 Credits
Differential Equations
- G1011449
- Elective Credits
- Second Semester
- 6 Credits
History of Mathematics
- G1011450
- Elective Credits
- Second Semester
- 6 Credits
Game Theory
- G1011451
- Elective Credits
- Second Semester
- 6 Credits
Algebraic Topology
- G1011452
- Elective Credits
- Second Semester
- 6 Credits
Professional training placement
- G1011453
- Elective Credits
- Work Placements in Companies for Degrees and Master's Degrees
- 6 Credits
Undergraduate dissertation
- G1011423
- Compulsory Credits
- End of Degree Projects and End of Master's Degree Projects
- 12 Credits
Reconocimiento de créditos optativos sin equivalencia en el grado
- G1011RNOEQUIV00
- Elective Credits
- 1 Credits
No se contemplan
Access to Bachelor’s Degree programmes is granted to students with the following degrees/ diplomas or studies, or any other recognized as equivalent to these:
- A.1. Spanish Bachiller, European Baccalaureate or International Baccalaureate.
- A.2. Baccalaureate from European Union Member States’ education systems or other countries withinternational agreements.
- A.3. Advanced Technician in Vocational Training, Advanced Technician in Plastic Arts and Design orAdvanced Technician in Sports Education, from the Spanish Education System.
- A.4.Studies carried out in European Union Member States or in other countries with international reciprocal agreements which meet the academic requirements in those States to access their university study programmes.
- A.5. Official Spanish university degrees of Diplomado, Arquitecto Técnico, Ingeniero Técnico, Licenciado, Arquitecto, Ingeniero, Graduado or Máster Universitario.
- A.6. Partial (foreign or Spanish) university studies.
Access to Bachelor’s Degree programmes is also possible for:
- B.1. People over twenty-five after successfully passing a specific access test.
- B.2. People over forty with work or professional experience related to a university field of knowledge.
- B.3. People over forty-five after successfully passing a specific access test.
Likewise, access to Bachelor’s Degree programmes is granted to:
- C.1. People meeting the requirements to enter university according to the Spanish Education System regulations prior to Ley Orgánica 8/2013, of December 9."
Dado que no se exige ninguna formación previa específica, ya que los alumnos pueden ser admitidos en la titulación de Grado de Matemáticas si reúnen los requisitos de acceso que marca la ley y puesto que no se establece un límite de plazas, se recomienda para el ingreso en el Grado en Matemáticas que la formación del alumno sea de perfil científico-tecnológico. Dentro de este perfil, además de las matemáticas, resulta recomendable, pero no imprescindible, cursar materias de biología, física y química.
Cualidades deseables del futuro estudiante del Grado de Matemáticas:
- Gusto por resolver problemas
- Habilidad en el cálculo
- Rapidez mental
- Visión geométrica en el espacio
- Capacidad de argumento lógico
1.- El alumnado de primer curso por primera vez a tiempo completo tienen que matricular 60 créditos. Un 15% del alumnado podrá cursar estudios a tiempo parcial (30 créditos).
2.- Continuación de estudios: libre con un máximo de 75 créditos
La USC tiene un programa de alumnos tutores para las titulaciones de grao, de forma que alumnos de últimos cursos, despues de una formación que les facilita la Universidad, realizan tareas de orientación a los alumnos que inician los estudios.
Información programa alumnos tutores:
Cuando se produzca la suspensión de un Título oficial, la USC garantiza el adecuado desarrollo efectivo de las enseñanzas que hubieran iniciado sus estudiantes hasta su finalización. Para ello, el Consejo de Gobierno aprueba los criterios relacionados, entre otros, con:
• La admisión de matrículas de nuevo ingreso en la titulación.
• La supresión gradual de la impartición de la docencia.
• Si el título extinguido es sustituido por otro similar (modificando la naturaleza del título), fija las condiciones que facilitan a los/las estudiantes la continuidad de estudios en el nuevo título y las equivalencias entre las materias de uno y otro plan.
Access to Bachelor’s Degree programmes is granted to students with the following degrees/ diplomas or studies, or any other recognized as equivalent to these:
A.1. Spanish Bachiller, European Baccalaureate or International Baccalaureate.
A.2. Baccalaureate from European Union Member States’ education systems or other countries withinternational agreements.
A.3. Advanced Technician in Vocational Training, Advanced Technician in Plastic Arts and Design orAdvanced Technician in Sports Education, from the Spanish Education System.
A.4.Studies carried out in European Union Member States or in other countries with international reciprocal agreements which meet the academic requirements in those States to access their university study programmes.
A.5. Official Spanish university degrees of Diplomado, Arquitecto Técnico, Ingeniero Técnico, Licenciado, Arquitecto, Ingeniero, Graduado or Máster Universitario.
A.6. Partial (foreign or Spanish) university studies.
Access to Bachelor’s Degree programmes is also possible for:
B.1. People over twenty-five after successfully passing a specific access test.
B.2. People over forty with work or professional experience related to a university field of knowledge.
B.3. People over forty-five after successfully passing a specific access test.
Likewise, access to Bachelor’s Degree programmes is granted to:
C.1. People meeting the requirements to enter university according to the Spanish Education System regulations prior to Ley Orgánica 8/2013, of December 9.
The Faculty of Mathematics has 10 rooms with different capacity and with teaching equipment. Furthermore, it has five computing rooms used in teaching and one is intended to the free access for the student. Moreover, it uses external facilities such as Astronomical Observatory.
Most of the subjects taught in the degree are expected to be combined with the virtual teaching platform from the USC.
The centre has both a library and study rooms. The library has more than 250 reading points, which are divided in two floors and it holds bibliographical collections including books reserved to the students and general works as well as research books. Moreover, the students have access to the Library of the Astronomical Observatory Ramón María Aller.
It is important also to mention that from every place in the Faculty there is wireless Internet connection.
1. To train students in the nature, methods and aims of the most relevant branches of Mathematics, preparing them for entry into the job market or for the undertaking of further study with a high degree of autonomy in scientific or technological disciplines.
2. To enable students develop analytic and abstraction capabilities, intuition, and logical and rigorous thinking.
3. To make students understand that Mathematics is an integral part of education and culture, so that they come to appreciate its presence in nature through science, technology and art.
4. To instil in students respect for equality of rights between men and women, for human rights, and for the principles of equal opportunities, non discrimination and accessibility of disabled people
Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio;
Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio;
Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética;
Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado;
Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
1. To understand the key concepts, methods and results from the different areas of Mathematics, and be acquainted with their historical development.
2. To gather and interpret data, information and relevant results, draw conclusions, and produce reports on problems of a scientific, technical or mathematically tractable nature.
3. To apply theoretical and practical skills and analytical and abstraction capabilities to the definition and formulation of problems and to problem-solving in academic and professional contexts.
4. To communicate with accuracy and clarity, both in writing and orally, knowledge, procedures, results and mathematical arguments to expert and non-expert audiences.
5. To study and learn independently, managing time and resources, new ideas and techniques in any scientific or technological discipline
1. Comprender y utilizar el lenguaje matemático.
2. Conocer demostraciones rigurosas de algunos teoremas clásicos.
3. Saber abstraer las propiedades y hechos sustanciales de un problema, distinguiéndolas de aquellas otras puramente circunstanciales.
4. Proponer, validar e interpretar modelos matemáticos de situaciones reales sencillas.
5. Planificar y ejecutar algoritmos y métodos matemáticos para resolver problemas
6. Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, optimización y software científico, para experimentar en matemáticas y resolver problemas.
Mobility
La movilidad de los/as estudiantes está regulada a través del “Reglamento de intercambios interuniversitarios”. A través de la Oficina de Relaciones Exteriores se gestionan programas de intercambio tanto nacionales (SICUE), como europeos (ERASMUS) y extracomunitarios (intercambios con países de América Latina o países de habla inglesa):
Internships
Según el Art. 12.6 del R.D. 1393/2007, los estudiantes podrán obtener reconocimiento académico de un máximo de 6 créditos optativos por realización de prácticas externas relacionadas con el título. Las prácticas externas no forman parte de la oferta académica permanente de la Facultad, aunque esta colaborará con los órganos responsables de la Universidad en la organización de estas cómo oferta académica complementaria en la formación de sus estudiantes.
Los alumnos podrán inscribirse una vez superados 192 créditos obligatorios. Para poder presentarlo deberán tener superados, cuando menos, 228. A Facultade ofrecerá trabajos de fin de grado en ambos dos cuatrimestres.