ECTS credits ECTS credits: 3
ECTS Hours Rules/Memories Hours of tutorials: 1 Expository Class: 10 Interactive Classroom: 16 Total: 27
Use languages Spanish, Galician
Type: Ordinary subject Master’s Degree RD 1393/2007 - 822/2021
Departments: Chemistry Engineering
Areas: Chemical Engineering
Center Higher Technical Engineering School
Call: Second Semester
Teaching: With teaching
Enrolment: Enrollable | 1st year (Yes)
The aim of the subject is to change the concept, the students of the University Master of Chemical Engineering and Bioprocesses have, about the sewage treatment plants considered as raw materials and energy consuming environmental systems to be seen as sustainable systems (STP of the XXI century) to produce resources, energy, reusable water, value-added products (nutrients, biopolymers,…), which can be produced and utilized in a feasible economical way.
The contents of the subject are those succinctly indicated in the course descriptor:
“Study of the different alternatives to transform the STPs from resources sinks to sources of water, energy and products. Operational energetic optimization. Water reuse. Energy production and use. Biomass production reduction. Resources recovery: nitrogen, phosphorous, biopolymers. New” as it is indicated in Masters Report.
The subject program is divided in 5 sections which comprise the aspects indicated in the previous descriptor.
The development of the subject is structured in five units. The corresponding hours to Expositive Lectures (E.L.) and Interactive Lectures (I.L.) are indicated.
Unit 1. Change of paradigm: from the sewage treatment plants to resources recovery from the wastewater (2 h E.L. + 2 h I.L.).
STP, associated mass and energy balances. Energy associated to pumping and related equipment. Energy related to the aeration systems. Actions to reduce the energy requirements of conventional plants, energetic optimization. New schemes for resources recovery plants design. New challenges for the conception of the STP of the XXI century (decrease of sludge production, emerging pollutants, greenhouse gases). Sustainable development goals. Circular economy in the wastewater treatment sector.
Case study: energetic optimization of the operation of a wastewater treatment plant.
Unit 2. Wastewater reuse (2 h E.L. + 2 h I.L.).
The quality of wastewater for reuse purposes. Sanitary aspects of the water reuse. Legislation and normative. Technologies for water reuse: coagulation-flocculation, filtration through granular beds, utilization of microfiltration, ultrafiltration and nanofiltration membranes and reverse osmosis. Water disinfection for reuse purposes. Water reuse in the industry, urban and agricultural use. Aquifers recharge.
Case study: Application of technologies for emerging pollutants removal for reuse purposes.
Unit 3. Strategies for production and energy use optimization (2 h E.L. + 2 h I.L.).
Optimization of the use of the organic matter from the wastewater to produce biogas. Psychrophilic anaerobic digestion. Alternatives for nitrogen removal from the reject water and the main stream of a STP focused on the minimization of the organic matter biological requirements. Nitrite route. Anammox process. Autotrophic denitrification. Greenhouse gases production.
Case study: Applications to the sludge and main stream lines from a STP. Energy implications on the STPs operation (I).
Unit 4. High load advanced biological systems with low biomass production yields (2 h E.L. + 2 h I.L.).
Granular systems. Anaerobic granules formation. Biological processes: anaerobic and anoxic. Design criteria. High load reactors. Parameters affecting the aerobic granules formation. Sequencing systems operation. Biological processes: aerobic, anaerobic and anoxic. Main design parameters. Types of utilized reactors.
Case study: Applications to the sludge and main stream lines from a STP. Energy implications on the STPs operation (II).
Unit 5. Valuable products recovery from wastewater (2 h E.L. + 4 h I.L.).
Bacterial storage compounds. Bioplastics and polyhydroxialkanoates (PHA). Properties and uses of PHA. Storage compounds associated to the biological removal of organic matter or phosphorous. Phostrip process. PHA production in pure and microbial mixed cultures. Operational parameters. Use of the wastewater as substrate for the production of storage compounds as PHA. Production of volatile fatty acids. Production of exopolymers.
Case study: Applications to the sludge and main stream lines from a STP. Energy implications on the STPs operation (III).
Basic bibliography
- METCALF & EDDY INC. Wastewater Engineering. Treatment and resource recovery. 5ª Edición (edición internacional). New York: Editorial Mc-Graw Hill Higher Education, 2014. ISBN: 978-1-259-01079-8 Código ETSE: A213 13
Complementary materials (articles; norms)
- ARROJO, B. MOSQUERA-CORRAL, A., GARRIDO, J.M. e MÉNDEZ, R. Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research [en liña]. 2004, 38, 3389 – 3399 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.watres.2004.05.002
- ASANO, T. e BAHRI, A. Global challenges to wastewater reclamation and reuse. En: JAN LUNDQVIST (ed.). On the water front. World Water Week. Stockholm: Stockholm International Water Institute-SIWI, 2011, vol. 2, pp. 65-73. ISBN : 978-91-975872-8-0
- BEUN, J.J., HENDRIKS, A., VAN LOOSDRECHT, M.C.M., MORGENROTH, E., WILDERER, P.A. e HEIJNEN, J.J. Aerobic granulation in a sequencing batch reactor, Water Research [en liña]. 1999, 33(10), 2283-2290 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/S0043-1354(98)00463-1
- BLANCO, A., ORDÓÑEZ, R. e HERMOSILLA, D. 100% Reutilización de agua para fabricar 100% papel recuperado. Infoenviro [en liña]. 2009, 91-94 [consultado 20 de maio 2021]. Dispoñible en: http://eprints.ucm.es/11887/1/Infoenviro2009Aguas_definitivo.pdf
- CAMPOS, J.L., VÁZQUEZ-PADÍN, J.R., FERNÁNDEZ, I., FAJARDO, C., SECA, I., MOSQUERA-CORRAL, A. e MÉNDEZ, R. Procesos avanzados de eliminación de nitrógeno: nitrificación parcial, Anammox, desnitrificación autótrofa. En: MOSQUERA-CORRAL A. (ed.). Tecnologías Avanzadas para el Tratamiento de Aguas Residuales. 2ª ed. Santiago de Compostela: Editorial Lápices 4, 2013, pp. 127-156. ISBN 13: 978-84-692-5028-0
- GARRIDO, J.M., FDZ-POLANCO, M. e FDZ-POLANCO, F. Working with energy mass balances: a conceptual framework to understand the limits of municipal wastewater treatment. Water Science and Technology [en liña]. 2013, 67(10), 2294-2301 [consultado 20 de maio 2021]. Dispoñible en: 10.2166/wst.2013.124
- GONZÁLEZ, Y., MEZA, J.C., GONZÁLEZ, O. e CÓRDOVA, J.A. Síntesis y biodegradación de polihidroxialcanoatos: plásticos de origen microbiano. Revista Internacional de Contaminación Ambiental [en liña]. 2013, 29(1), 77-115 [consultado 20 de maio 2021]. Dispoñible en: http://www.scielo.org.mx/pdf/rica/v29n1/v29n1a7.pdf
- Guía para la aplicación del R.D. 1620/2007 por el que se establece el Régimen Jurídico de la Reutilización de las Aguas Depuradas [en liña]. España: Centro de publicaciones del Ministerio de Medio Ambiente y Medio Rural y Marino, 2010 [consultado 20 de maio 2021]. Dispoñible en: https://www.miteco.gob.es/es/agua/publicaciones/GUIA%20RD%201620_2007__…
- HERNÁNDEZ, F., MOLINOS, M. e SALA-GARRIDO, R. Eficiencia energética, una medida para reducir los costes de operación en las estaciones depuradoras de agua residuales. Tecnología del Agua, 2011, 326, 46-54. ISSN 0211-8173
- HULSHOFF, L.W., DE CASTRO,S.I., LETTINGA, G. e LENS, P.N.L. Anaerobic sludge granulation. Water Research [en liña]. 2004, 38, 1376–1389 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.watres.2003.12.002
- LEE, W.S., MAY CHUA, A.S., YEOH, H.K. e NGOH, G.C. A review of the production and application of waste-derived VFA. Chemical Engineering Journal [en liña]. 2014, 235, 83-99 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.cej.2013.09.002
- LUO, Y., GUO, W., NGO, H.H., NGHIEM, L.D., HAI, F.I., ZHANG, J., LIANG, S., e WANG, X.C. A review on the occurrence of micropollutants in the aquatic environment and the fate and removal during wastewater treatment. Science of the Total Environment [en liña]. 2014, 472-474, 619-641 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.scitotenv.2013.12.065
- MELGAREJO, J. Efectos ambientales y económicos de la reutilización del agua en España. Clm. Economía [en liña]. 2009, 15, 245-270 [consultado 20 de maio 2021]. Dispoñible en: http://www.clmeconomia.jccm.es/pdfclm/melgarejo_clm_15.pdf
- MORALEJO-GÁRATE H., MOSQUERA-CORRAL A., KLEEREBEZEM R., CAMPOS J.L. e VAN LOOSDRECHT M.C.M. Innovative processes for resources recovery from wastewaters: PHA production. En: OMIL PRIETO, F. y SUÁREZ MARTÍNEZ S. (eds.). Innovative technologies for urban wastewater treatment plants. Santiago de Compostela: Editorial Lápices 4, 2012, pp. 261-296. ISBN 978-84-695-3514-1
- MORALES,N., VAL DEL RÍO, A., VÁZQUEZ-PADÍN, J.R., MÉNDEZ R., MOSQUERA-CORRAL, A. e CAMPOS, J.L. Integration of the Anammox process to the rejection water and main stream lines of WWTPs [en liña]. Chemosphere, 2015, 140, 99-105 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.chemosphere.2015.03.058
- MOSQUERA-CORRAL, A., FIGUEROA, M., MORALES, N., VAL, A., CAMPOS, J.L. e MÉNDEZ, R. Tecnologías basadas en biomasa granular aerobia. En: MOSQUERA-CORRAL A. (ed.). Tecnologías Avanzadas para el Tratamiento de Aguas Residuales. 2ª ed. Santiago de Compostela: Editorial Lápices 4, 2013, pp. 47-68. ISBN 13: 978-84-692-5028-0
- PÉREZ-PARRA, J. Depuración y reutilización de aguas residuales para riego. Curso superior de especialización. Mejora de la eficiencia del uso del agua en cultivos protegidos, Cajamar, 447-469 [consultado 20 de maio 2021]. Dispoñible en: https://www.publicacionescajamar.es/publicacionescajamar/public/pdf/ser…
- REAL DECRETO 1620/2007, de 7 de diciembre, por el que se establece el régimen jurídico de la reutilización de las aguas depuradas. BOE 294, 50639-50661. [consultado 20 de maio 2021]. Dispoñible en: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2007-21092
- REHM, B.H.A. Bacterial polymers: biosynthesis, modifications and applications. Nature Reviews, Microbiology, Advance online publication [en liña]. 2010, 1-15 [consultado 20 de maio 2021]. Dispoñible en: 10.1038/nrmicro2354
- SARPONG G., GUDE V.G. e MAGBANUA B.S.Energy autarky of small scale wastewater treatment plants by enhanced carbon capture and codigestion – A qualitative analysis Energy Conversion and Management [en liña]. 2019, 199, 111999 [consultado 20 de maio 2021]. Dispoñible en doi: 10.1016/j.enconman.2019.111999
- SIEGRIST, H., SALZGEBER, D., EUGSTER, J. e JOSS, A. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Science and Technology [en liña]. 2008, 57(3), 383-388 [consultado 20 de maio 2021]. Dispoñible en: 10.2166/wst.2008.048
- SIMÓN, P., LARDÍN, C. e ABELLÁN, M. Optimización energética en EDAR de la región de Murcia. Ingeniería Civil [en liña]. 2012, 168, 93-112 [consultado 20 de maio 2021]. Dispoñible en: http://hispagua.cedex.es/sites/default/files/hispagua_articulo/Ingcivil…
- VAN HAANDEL, A.C. e LETTINGA, G. Anaerobic sewage treatment. A Practical Guide for Regions with a Hot Climate. Chichester, England: John Wiley & Sons Ltd., 1994. ISBN 978-0471951216
In this subject the student will acquire or practice a serial of knowledge, competences or skills, belonging to the engineering in general and specific of the science and technology of water treatment in particular.
Knowledge
(CN02) Acquire advanced knowledge and demonstrate, in a scientific and technological or highly specialized research context, a detailed and well-founded understanding of the theoretical and practical aspects and methodology of work in one or more fields of study in Chemical Engineering.
Competences
(CP09) Manage Research, Development and Technological Innovation, taking care of technology transfer and property and patent rights.
Skills
(HD01) Have ability to solve problems that are unfamiliar, incompletely defined, and have competing specifications, considering the possible solution methods, including the most innovative, selecting the most appropriate, and be able to correct the implementation, evaluating the different design solutions.
(HD04) Search, process, analyze and synthesize, critically, information from various sources for the establishment of the corresponding conclusions.
Before the commencement of the course, the students will be provided with a docent guide where the detailed planning of the activities to be developed in each session comprising the subject is indicated. The different articles, chapters or books needed for reading previously to the lecture will be listed in this guide.
The Virtual Classroom (Moodle) will be used to make available to the students the documentation related to the activities of the seminars and the practical cases as well as for the student-lecturer communication. The students using the Microsoft Excel tool will carry out a series of practical cases.
Description of the methodology applied to each activity and associated competences:
• Expository classes (CN02): The lectures will be given in the form of seminars where the lecturer will emphasize the most relevant aspects about the state of the art, and, where the student’s assimilation of contents will be verified.
• Seminars (HD01, HD04): They will be used to solve (using Microsoft Excel) the practical cases that arise for each of the topics in which the subject is divided. In one of the seminar sessions there will be a talk given by a professional from the business sector and related to the subject matter. This activity will be carried out in collaboration with the Innovative Technologies for Water Treatment subject.
• Technical visit (HD04): A technical visit will be made to a company related to the subject, whenever possible. This activity will be carried out in collaboration with the Innovative Technologies for Effluent Treatment subject.
• Laboratory practices (CP09): One practice of 4 hours of duration will be performed, where the students will apply the contents worked during the lectures to a treatment stage or product recovery from a sewage treatment plant with the aim of optimizing the process, i.e.:
-Monitoring accumulation cycles in a reactor for biopolymers production.
-Characterization of the activity of Anammox biomass as a control parameter of the operation of an autotrophic nitrogen removal reactor.
-Determination of aerobic activities by respirometry.
• Group tutorials (HD01, HD04): 1 group tutorial will take place to solve specific doubts about the solving of the case studies or the activities in the laboratory classes.
The student’s grade is a weighted average of its performance in the four parts that are evaluated: lecturer’s report on performance in the subject, quality of the performed work, laboratory performance and exam. The work to be performed by the students (in groups of two members) will consist of solving the case studies proposed by the lecturer in each of the units. The importance of each of the items comprising the evaluation is as follows:
1. Tutorials 5% (HD01, HD04)
2. Visit + Company Talk 5% (HD04)
3. Teamwork 45% (HD01, HD04)
4. Laboratory 15% (CP09)
5. Exam 30% (CN02)
To pass the subject the students must obtain at least a minimum of 50% in the exam scores and obtain a minimum global score of 5.0 points. In the event of not reaching 50% of the exam grade, the overall grade of the subject will correspond only to the exam. The scores of the activities carried out (tutorials, technical visit, talk, teamwork and laboratory) will be kept for the second opportunity.
The students who have not fulfilled the assignments in the first opportunity will maintain the obtained qualification in each evaluated item and they will have to repeat only the exam in the second opportunity. The exam of the second opportunity will have an identical structure to that in the first opportunity.
No-show students will be those who have not participated in any of the activities proposed.
In cases of fraudulent performance of exercises or tests, the provisions of the Regulations for evaluating student academic performance and reviewing grades will apply.
List of activities assessment and competences:
Activity............................................Competences
Group tutorial...................................... HD01, HD04
Visit+Company talk............................. HD04
Teamwork case studies...................... CN02, HD01, HD04
Work in the classroom........................ CN02, HD01, HD04
Work in laboratory.............................CP09
Laboratory report..............................CP09
Exam................................................CN02
The subject has a workload of 3 ECTS. The face-to-face hours that correspond to the subject are distributed as indicated in the table.
Distribution of the educational activity in ECTS
a) Face-to-face hours
Expositive lectures...........10.0
Interactive lectures..........12.0
Laboratory.......................4.0
Tutorials (in groups)..........1.0
Exam and revision............2.0
b) Student personal work.............46.0 h
It is important that the students study previously those texts, documents of articles that are indicated in each section of the docent guide. It is essential to have a medium skill on English Language and excellent command of Excel.
Docents
Anuska Mosquera Corral
Dpto. Ingeniería Química
Teléfono: 886816779
correo-e: anuska.mosquera [at] usc.es (anuska[dot]mosquera[at]usc[dot]es)
For laboratory practices the student must come with a lab coat and safety glasses.
The admission and permanence of the students enrolled in the practical laboratory requires that they know and comply with the standards included in the Protocol of basic training in security matters for experimental spaces of the Higher Technical School of Engineering, available in the security section of its Web. To access the document do as follows:
1. https://www.usc.gal/gl/centro/escola-tecnica-superior-enxenaria
2. Access your intranet
3. Go to Comisións / Seguridade e Saúde/Formación
4. Press in “Protocolo de formación básica en materia de seguridade para espazos experimentais”
With regards to security and working risks prevention, for each of the practical equipment the students will have available a basic manual of operation where the most important aspects are indicated.
The online platform Campus Virtual will be used as a tool to facilitate information/announcements on the teaching activity throughout the course, as well as supplementary materials for the study of the course.
The subject will be given in Spanish language.
Anuska Mosquera Corral
Coordinador/a- Department
- Chemistry Engineering
- Area
- Chemical Engineering
- Phone
- 881816779
- anuska.mosquera [at] usc.es
- Category
- Professor: University Professor
Wednesday | |||
---|---|---|---|
16:00-18:00 | Grupo /CLE_01 | Spanish | Classroom A6 |
05.26.2025 10:00-12:00 | Grupo /CLIS_01 | Classroom A6 |
05.26.2025 10:00-12:00 | Grupo /CLE_01 | Classroom A6 |
05.26.2025 10:00-12:00 | Grupo /CLIL_01 | Classroom A6 |
07.07.2025 16:00-18:00 | Grupo /CLIL_01 | Classroom A6 |
07.07.2025 16:00-18:00 | Grupo /CLIS_01 | Classroom A6 |
07.07.2025 16:00-18:00 | Grupo /CLE_01 | Classroom A6 |